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A Appendix
A.1  Training Details

A.1.1  Texture RGB Generation. We trained our Texture RGB Gener-
ation model using SDXL [Podell et al. 2024] pre-trained weights, fine-
tuning it on 1,000 high-quality texture rendering images rendered by
R with fixed top-down view camera and top-left directional lighting
settings. Each image was manually captioned to describe material
type, color, patterns, and visual effects, with captions consistently
starting with "texture of". The model was trained on 1k-resolution
with a batch size of 4, using circular padding for all convolutional
layers. Optimization was performed using the Lion optimizer [Chen
et al. 2024] with a learning rate of 4 X 1077, while the text encoders
were trained with a learning rate of 2 x 1077 and frozen after epoch
35 of the 100-epoch training. The entire process took approximately
18.5 hours on an RTX A6000 GPU.

A.1.2  Material Estimation. Our model builds on pre-trained SD 2.1
weights [Rombach et al. 2021]. The training and validation datasets
include 5,789 public materials from MatSynth [Vecchio and De-
schaintre 2024] and 1,297 private materials. After 4-way rotational
augmentation, we obtain 28,344 samples at 1024 X 1024 resolution.
During training, inputs are randomly downscaled by a factor of two
with a probability of 0.2; otherwise, they are randomly cropped to
512 x 512 with a probability of 0.8. Texture RGB images are rendered
as Irgp = R(MAT; 1), with [ randomly rotated per iteration.

The training process consists of two phases. The optional Pre-
training Phase uses standard v-prediction diffusion training to warm
up model weights, with timestep ¢ uniformly sampled from [1, T].
We adopt velocity parameterization [Salimans and Ho 2022] with
zero-SNR [Lin et al. 2024], and freeze all VAE weights as training
operates in latent space. The Single-step Phase is the main stage,
using a fixed timestep ¢ = T and our chained prediction pipeline.
During pretraining, we decay the learning rate exponentially from
1% 107 to 1 X 107> over 5 epochs with batch size 8. In the single-
step phase, we fix the U-Net learning rate at 3 x 107> and the VAE
decoder at 1 X 107, training for 20 epochs with batch size 3. Total
training time was approximately 5.2 days on an RTX H100 GPU.
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A.2  Light Direction Search

In the Roughness & Metalness prediction step of our Chord pipeline,
the renderer R requires an estimated lighting direction I*. Assum-
ing a single directional light source, we adopt a simple yet effective
strategy to estimate its direction based on observed irradiance. Em-
pirically, light energy tends to decay along the direction of the light
source. Thus, we estimate the lighting direction by identifying the
axis along which irradiance decays most rapidly. See Alg. 1.

ALGORITHM 1: Light Direction Estimation from Irradiance Image

Input: RGB irradiance image Ijrg, convergence threshold e, iterative

search sample count N
Output: Estimated direction 1"
Iirr < preprocess(Ijrr);

// Convert to grayscale, apply
noise reduction
[Omil’b Hmax] — [0: 2”]§
while 0, — Omin > € do
{61, ...,0n} <« uniformly_sample([Omin, Omax |, N);
{diffy, ..., diffy} < compute_irradiance_difference(Ijrg,
{61,...,0n});

k « argmax diff;;
ie[LN]

0" — Ok;

[Gmin, Gmax] — [gk—l, 9k+1];
end
I* « [cos 6*,sin 6%, V0.5];

return I*;

// Update search interval

Our method estimates the dominant light direction by analyz-
ing directional irradiance contrast in the preprocessed image. In
the preprocess function, the input RGB irradiance image is first
converted to grayscale and smoothed using mean and median fil-
ters to reduce noise and emphasize low-frequency lighting patterns.
In the compute_irradiance_difference function, we evaluate di-
rectional contrast by drawing lines through the image center at
various orientations, splitting the image into two half-planes. For
each orientation, we compute the total irradiance in the positive and
negative halves and take their difference as a measure of directional
lighting strength. The orientation that yields the maximum contrast
indicates the axis of strongest irradiance decay; the estimated light
direction is taken to be orthogonal to this axis. To efficiently refine
the estimate, we employ a coarse-to-fine strategy: starting from a
uniform angular sampling over [0, 27], we iteratively narrow the
search interval via binary refinement. The resulting 2D direction is
lifted to 3D by appending a fixed z-axis component.
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A.3 Evaluation Dataset Details

The detailed material category distribution is illustrated in Fig.1.

A.4 Additional Results

A.4.1 PBR Comparisons. InFig.2 and Fig.3, we compare our method’s
material estimation results with state-of-the-art approaches, includ-
ing RGB—X [Zeng et al. 2024], MatFusion [Sartor and Peers 2023],
ControlMat [Vecchio et al. 2024], SurfaceNet [Vecchio et al. 2021],
and MaterIA [Martin et al. 2022]. We directly use input images from
the supplementary material of ControlMat that match our direc-
tional lighting assumptions to evaluate our method. Additionally,
we take the results for the latter three comparison methods from
the same supplementary material.

A.4.2  Highly Specular Materials. In Fig.4 and Fig.5, we show more
estimation examples for highly specular metal materials comparing
with baselines.
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MatSynth Test Split Substance Test Set

A o

Ceramic — 9 (10.1%)
Concrete — 5 (5.6%)
Fabric — 5 (5.6%)
Ground — 5 (5.6%)
Leather — 7 (7.9%)
Marble — 5 (5.6%)
Metal — 16 (18.0%)

Plaster — 5 (5.6%)
Plastic — 5 (5.6%)
Stone — 9 (10.1%)
Terracotta — 5 (5.6%)
Wood — 5 (5.6%)
Misc — 8 (9.0%)

Fig. 1. Material category distributions for the two evaluation datasets.

Ceramic — 25 (10.0%)
Concrete — 21 (8.4%)
Fur/Feather/Fabric — 12 (4.8%)
Ground — 24 (9.6%)
Leather — 10 (4.0%)
Marble — 19 (7.6%)
Metal — 22 (8.8%)
Plastic — 17 (6.8%)
Stone — 19 (7.6%)
Terracotta — 22 (8.8%)
Wood — 31 (12.4%)
Food — 18 (7.2%)
Organic — 10 (4.0%)
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Fig. 2. Material estimation comparison: brick wall. §: trained on our dataset, *: results obtained from ControlMat supplementary material.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.



Ours GT

RGB—X'

MatFusion’

SurfaceNet* ControlMat*

MaterIA*

Fig. 3.
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results obtained from ControlMat supplementary material.
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Fig. 5. Additional estimation comparisons for metal surface.
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